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SUMMARY

A variational finite element model for transonic small disturbance
calculations is described. Different strategy is adopted in subsonic and
supersonic regions, and blending elements are introduced between different
regions. In the supersonic region, no upstream effect is allowed. 1If rec-
tangular elements with linear shape functions are used, the model is similar
to Murman's finite difference operators. Higher order shape functions, non-
rectangular elements, and discontinuous approximation of shock waves are also
discussed.

INTRODUCTION

The plane, steady, inviscid flow past a smooth configuration near sonic
speed can be described by a perturbation velocity potential ¢ satisfying
the transonic small disturbance equation (TSDE)

(K0, )0, + ¢ = 0 b

where K is a similarity parameter. This equation is nonlinear and of mixed
hyperbolic-elliptic type. Its weak solution admits discontinuity in the

pressure,
dxD 2
<K—¢x> = —(? (2)
and
D oy ]
dx* _ _ L y= - = !
dy .0 - [e]l =0 (3) & (3")

where < > and H: ] signify the average and the jump across the shock xD(y).
The flow field solution is required to determine the pressure distribution on
the airfoil (unlike the methods of singularities, or Kernel methods, used for
incompressible flow calculations). Recently, finite difference solutions
have been obtained with marked success (refs. 1 -~ 4).

In this paper, the feasibility of applying a finite element approach. to
transonic flow problems will be studied. A finite element method should handle
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the same problems that finite differences did, namely, the change of the type
of the equation in the domain of interest with a discontinuous solution
satisfying prescribed jump conditions. In passing, the potential solution is
completely reversible (no entropy changes), and an expansion shock must be
excluded (using an artificial viscosity or a shock fitting procedure). Hope-
fully, complicated boundary conditions will be handled easily in the physical
space, and the use of higher order shape functions will be efficient.

FINITE ELEMENTS - BACKGROUND

Elliptic Problems

Consider the classical boundary value problem,

Le(¢) = K¢XX + ¢yy = f on a rectangular (%)
where ¢ is known on 9Q; K > 0. The associated functional is
2 2
I(¢) = /:/m + ¢ 7 + 2f¢ dxdy (5)
a = y
The first variation is set equal to zero
11
= + - f =
oI () /](chxx ¢yy ) Spdxdy = 0 (6)
00

and the second variation is positive definite.

If linear shape functions on triangular elements are used, the algebraic
equations for the nodal values are identical to those obtained by applying a
centered difference scheme.

A gradient method for solving this problem is

s0 = o™ - " = - geI(e™ 7)

where n indicates the iteration and the optimum O may be obtained in terms
of the Residual and the Hessian.

Many nonlinear elliptic problems are solved iteratively by casting them
in Poisson's form, where nonlinearity acts as a driving force (incompressible
sources) =

sb._ + 86 = — wR(¢™) (8)
¥y

XX

and where R 1is the Residual and w is a relaxation parameter.

Argyris (ref. 5) calculated compressible subsonic flows by the Galerkin
method and obtained impressive results within a few iterations. Similar
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applications were reported by Gelder (ref. 6), Norrie and DeVries (ref. 7),
Periaux (ref. 8), and Chan and Brashears (ref. 9).

Hyperbolic Problems

Finite element methods were also developed for approximate solutions of
initial value problems. Both variational and weighted Residual methods were
used (see refs. 10 - 16). Most of these investigators used either finite
element in space with finite difference in time, a quasi-variational principle,
or a convolution bilinear form. A variational formulation for initial value
problems is not possible in the classical context of the calculus of varia-
tions. Consider the simple linear wave equation

Ly (@) = Kb+ = £, K <O (9

where ¢(x =0) and ¢ (x = 0) are given as initial conditions and x is
the time-like coordinata. Application of Hamilton's principle requires know-
ledge of the conditions at the beginning and end of a time interval and does
not apply here. This is difficult because we persist in employing boundary
value techniques to solve an initial value problem.

Contrary to the conventional shooting method (an initial value techmique),
which employs a marching (step-by-step) scheme to solve a boundary value
problem, here we will solve the initial value problem by a formal application
of Hamilton's principle. The success of the shooting methods depends on the
assumption that a variation in the initial slope has a one-to-one correspond-
ence with a variation in the end position; hence, the problem can be solved
iteratively. At each iteration, only an initial value problem is solved. For
linear problems, iterations may not be needed. The reverse of this process is
valid if the same assumption holds, namely, initial value problems can be

solved iteratively, with each iteration consisting of a boundary value problem.
Again, iterations may not be needed for linear problems.

So, if we assume that the end value ¢(x = X) is known instead of the
initial slope ¢ (x = 0), the associated functional (potential and kinetic

energy) would be™
X 1
2 2
1(¢) = ff k6,2 = 0% + 284 axay (10)
0 O

which can be discretized and expressed as a sum over finite elements. A basic
requirement for application of Hamilton's principle is that we not vary the
extreme positions of the physical system. The missing equation (the variation
with respect to the end position) is replaced by an equation prescribing the
variation with respect to the initial slope (see fig. 1).

Note that the second variation is not positive (stationary but not
extremum), and there may be no advantage over weighted Residual methods with

a sensible choice of suitable weighting functions. We note also. that
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arrangement of the elements is not completely arbitrary, and sometimes

the element size is restricted by stability requirements. For example, if we
use linear shape functions on triangular elements, the algebraic equations

for the nodal values are identical to those obtained by explicit centered
difference schemes. These requirements arise because a hyperbolic system has
characteristics (or preferred directions of propagation) and by just minimizing
the energy, we have not taken these features into account. Implicit
(unconditionally stable) schemes will be discussed below.

For many nonlinear hyperbolic equations, the following iterative
procedure can be used:

- 080y T 8byy T~ WRGD) (11)

where ¢ 1is determined to guarantee convergence of iterations (the approximate
domain of dependence contains the exact one).

TRANSONIC FLOWS

Consider the functional

1@ = [fL wo? + 05) - § Grdxdy - [ e an

51

Perturbing ¢ in any direction nN(N is an admissible function)

I($ + €n) = I(d) +ej:/EK¢X - % ¢}2()nx + ¢ynydxdy - f gn ds
S
1

2 3
£ 2 2 € 3
+ /.-/EK - ¢X)T]X + le dxdy + —~ ./;]x dxdy (13)

Vanishing of the first variation gives

/ﬁK¢X - %— Cbi)nx + ¢ynydxdy ~ / gNds =0 (14)

S1

Applying Green's theorem, equation (3) becomes

STt -3+ @, T - [ ¢ -ona-0 a»

51

Note that the second variation is not always positive.
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Iterative Procedures

For a nonlinear problem, we need a linearization procedure and a
discretization technique. 1In general, they do not commute.

If we start by discretizing the integral expression, minimization will
lead to a nonlinear system of algebraic equations to be solved iteratively
(e.g., Newton's method). On the other hand, consider the sequence of

functionals
. n-1,,2 2
1) = _[[(K—(bx Yo, + by - f 2g¢ds (16)

51

At each iteration, only a linear system of equations will be solved.

Discretization Procedures

The finite element method has been used to solve efficiently subsonic
flow problems, with complex geometries employing nonrectangular elements,
with a better approximation of the boundary conditions than finite differences.
Although the matrix for the nodal values will not have the same regular
structure as in finite differences, the number of unknowns is usually less
(for higher order elements), and the matrix inversion procedure is different
(banded Gaussian Elimination).

For transonic small disturbance theory, the streamlines are almost
parallel to the x-axis, and the body boundary condition can be applied at
vy = 0., Moreover, in the supersonic bubble, x is the time-like coordinate,
and the nodes may be located along x = constant lines. Finite differences
suit the problem very well. The small disturbance simplifications eliminate
the advantages of finite elements. The situation will be different, however,
if the full potential equation is considered where the flow direction is
unknown and if the exact boundary conditions are applied at the surface of the
body.

Nevertheless, we will consider a simple example and use rectangular
elements to study the feasibility of using a finite element approach to a
mixed type equation. As a matter of fact, efficient finite difference schemes

for elliptic and parabolic equations are constructed this way (see refs. 17 -
19).

Semi-Discretization

Let

)E

P SRARAC)

i
=

where m is the number of strips in the y—direction. The functional I
becomes n
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zm: i 2 ~2 ax; ax,
I ($) = Ly & Ky fxx dx+f Mi. i dx}

|

1 x
where
y=y
/ F av, av,
K., = S
ij A dy dy dy
Y=Y
and _ B
y_yF V—yF
n -
M = - Y.Y.dy = Y.Y.d 17
y 40 (k) Yi¥yay = f XYYy @

The kinetic and potential energies are

X .
=1 Xy Iy -1
ZE dx V= 2EZKinin

ij dx

The Euler-Lagrange equation reads
GﬁT—V)dx =0 (tee., - OX) + KX = 0) (18)

where M and K are the mass and the stiffness matrices. Or, in the
canonical form,

MX =P P =+ KX (18")

where X (x) must satisfy the essential boundary conditions. For local

hyperbollc regions, the end value Xi(x = x ) will be replaced by an initial
dX

condition, a;—-(x = X_).

1

Full-Discretization

Instead of solving a system of ordinary differential €quations along lines,
we will consider different discretization procedures also in the x-direction.

Finite Element in Space, Finite Difference in Time. - If linear hat
functions in y are used, M will be a trladlagonal matrix

-h, ] . 191 1%
6K2 [l 4 1 and K will read [ 12 l]h

These two matrices will be modified by introduction of the boundary conditions.

In the x-direction, centered differences in the subsonic segment will give
star A, as shown in figure 2, while backward differences in the supersonic
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segment will give star B. At the parabolic point P, Ky 1is set equal to zero.
At the shock point S the locally normal shock relation <K—¢ > =0 provides
¢. downstream of the shock and is used as a derivative boundary condition for
the rest of the unknowns on the line.

Finite Element in Space and Time. -~ If linear hat functions in both vy
and x are used, both stars A and B will be the same as in figure 3.

Higher Order Shape Functions: Linear Hat Functions in y and Hermite
Cubics in x. - The cubic polynomial on 0 < x < Ax , which takes on the four
prescribed values by ¢XO, ¢, and ¢Xl » 18

— ]
X} = Hyps Hygs Hyys Hyp | 109}
with Hyy = 203 - 392 + 1 { ¢. }
0 X,
043 2
By = 20° + 30 { N }
H = (07 - 20% = 0)Ax { ¢}
10 Xl
_ 3 2 L —_
Hll = (687 - 87)Ax
N _
(6 = AX) (19)

In the subsonic region, the contribution of the neighboring element will be
included through the assembly of the elemental expression into the global

system (see figure 4). 1In the supersonic region, the stationary value with
respect to ¢ (0) and ¢ _(Ax), assuming ¢(0) and ¢(Ax) are known, will give
two algebraic®equations tRat will be used to solve for ¢(Ax) and ¢ (Ax)
(according to the inverse shooting method described earlier), namely,X

A .
j" 1o¥ (a_ax (M B_BX) + K) {X} dx =0 (20)
o i
[All Alz] [{dJl } _ [311 B12] [{% }] + [{fo }] (20")
A21 A22 {¢Xl BZl B22 {¢X0} {fl }

Note, no upstream effect is allowed in the supersonic region.

or

Nonrectangular Elements. - All the previous approximates were special
cases of tensor products. To relax this restriction, consider

¢ =T ¢,N, (x,y) (21)
1
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where N. are the global shape functions. (For example, the isoparametric
element with four nodes, where ¢, ¢4, and ¢ are given at each node, curved
boundaries are allowed with the restriction thit the nodes in the supersonic

region lie on x = constant lines.)

Element Equations and Assembly Procedures

For simplicity, consider a bilinear element with four nodes:
¢e = a + bx + cy + dxy

The coefficients a, b, ¢, and d are given in terms of the four nodal values.
(If the elements were rectangular, this case would reduce to the tensor product
of linear hat functions in x and y .) If we consider the element equations
rather than the nodal equations, the usual finite element assembly procedure
in the supersonic region must be modified according to the inverse shooting

method, as shown in figure 5.

The transition between the elliptic and hyperbolic parts of the flow is
achieved by introducing blending elements between different regions. Two such
elements are used: one for the sonic line; one for shock waves.

Sonic Elements

For sonic elements, the average of (K-¢n) is set to zero. These
elements act as a '"buffer zome' between subsonic and supersonic elements. We
can show that the system matrix will be positive definite if the above
assembling strategy is adopted and if the sonic element is included.

Shock Elements

In transonic small disturbance calculaticns by finite differences, shocks
are either captured (using artificial viscosity) or fitted (as a discontinuity).
The artificial viscosity term required to smooth out the discontinuity is
usually of the same order as the mesh size (because of large, but finite,
gradients of the solution in the shock region, even if higher order schemes are
used). The same comment holds for finite elements. On the other hand, the
discontinuous finite element approximation of shock waves proved to be efficient
in nonlinear elasticity (see ref. 20). Here we will describe a finite element
analogue for the shock fitting procedure used by Hafez and Cheng (ref. 21).

Consider a shock element, as shown in figure 6. The Rankine-Hugoniot
relations under the transonic small disturbance assumptions are given in
equations (13) and (14).

The first relation can be derived actually from the weak solution ad-
mitted by TSDE, while the second is consistent with the irrotationality
condition, which is equivalent to [¢]]= 0 . The equation for the nodal value
at i - 1 will not be affected. The equation at i , however, will be
different since only the contribution of segment II downstream of the shock
will be considered. To the first order of accuracy, knowing $¢i-1 and d5_o
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we know the condition upstream of the shock. Xpl can be determined according
to relation (2) and in terms of ¢, . The righthand side (dx/dy) 2 may be
evaluated from a previous iteratiofi as the average of the slope of the shock
in the adjacent elements. If this term is neglected, the scheme will reduce
to the shock point operator, as discussed earlier. The compatibility relation
(3') is satisfied by using linear shape functions in upstream and downstream
segments. Thus, (in finite difference calculations) the introduction of

shock relations will not make the system matrix singular or disturb the con-
vergence of iterations.

As an alternative approach, instead of altering the nodal equation at the
shock point to admit the jump in ¢, between i and 1i-1, according to
equation (1), we may use the divergence theorem to obtain an integral relation
as a conservation of mass over the element. The element equation will read

[/v gdA fg nds = (22)

Ko - 1/2 ¢
-+
g =

by

Bilinear shape functions in I thru IV (fig. 6) may be used with a jump in Px
across the shock. Similarly, the irrotationality condition (existence of
potential) implies zero vorticity over each element and, by Stokes theorem, zero

circulation, namely
> >
fv-ds =0 (23)

‘ X

-
\
¥y

So, as an alternmative approach, relations (2) and (3) are replaced by
relations (22) and (23).

where

REMARKS AND COMMENTS

Mixed Variational Principles

Note that higher order shape functions, namely, Hermite cubics, lead
to equations (20) and (20') for ¢ and ¢ at the nodes. The resulting
algebraic equations can be considered as finite difference approximations of
two differential equations: the first is the TSDE (1), and the second is the
x~-derivative of the TSDE. Instead, the problem can be formulated in terms of
two unknown functions ¢ and u , where ¢ 1is governed by the TSDE and u
is governed by a compatability relation u = ¢ . A mixed variational principle
(in terms of ¢ and u ), together with a duil iterative procedure for TSDE,
is studied in a separate paper where the merits and the efficiency of the new
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method is assessed.

Weighted Residual Methods

Chan and Brashears (ref. 9) used least squares to solve TSDE. Straight-
forward application of the method fails (the solution diverges), so results
can be obtained by changing the system matrix. The element matrices are
constructed in the usual manner. Before assembling the element matrices into
the system matrix, the rows corresponding to the nodes along the upstream side
of any element in the supersonic zone are zeroed out; hence, no upstream effect
is allowed there. Applying a similar procedure using the Galerkin method and
cubic elements in the x-direction gives

Ax HOl
/ . 3810431)“(% {x} dx = 0 (24)
0 11 X x

a o { ¢, } B B { ¢, 1 {£,}
11 12 1 - _ 11 12 0 + 0 (24,)'

. By Byp ||€ 0] £}

or

Note that equations (24) and (24') differ from equations (20) and (20') since
different weighting functions are used.

Type-Insensitive Methods

In our method, a different strategy is adopted in subsonic and supersonic
regions. A unified, type-insensitve method may be simpler, but not efficient,
since different requirements in each region must be satisified simultaneously.

To obtain such a procedure, the steady problem is embedded in a higher
dimensional space, where the problem is more amenable for analysis. The extra
dimension may have a physical meaning,as in the unsteady (time-dependent)
method or may be just a mathematical trick, like the use of .complex character-
istics or any parameter as in the method of parametric differentiation. Also,
extra dependent variables may be used, as in the mixed variational principle.
-The usefulness of these imbedding techniques depends on how fast the limit
solution will be obtained. As an example of a unified procedure, consider the
TSDE in the form of a system of first order equations,

Klux = vy = f K2 = K-u
uy -V, =8
or
(KR O) u 4 (O +l)(u) - (f)
0 -1 v +1 0 v g
x y
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For cases where Ky was a linear function of y , Friedrichs (ref. 22)
and Chu (ref. 23) found a transformation that put this system into a positive
symmetric form. As shown by Lesaint (ref. 24) and reported by Levanthal and
Aziz (ref. 25), the finite element method can be applied successfully using
this transformation. In general, however, such a transformation may not exist.
Nevertheless, if the problem is considered as the asymptotjc limit of an un-

steady problem, where the vector g is replaced by % g) (3 e the situation is
different. The modified system is symmetric and hyperbolic. Unlike the
equilibrium equations, for symmetric hyperbolic equations positivity could always
be attained by a simple transformation, as shown by Friedrichs (ref. 22). For
such a modified system, no special treatment for subsonic and supersonic

regions is needed.

However, based on the finite difference calculations of the Euler
equations, where centered differences are used everywhere in space, this
"iterative" procedure may be slow. On the other hand, it seems that efficient
applications of finite element methods to the full potential equation may
require such imbedding techniques (artificial time-dependent and viscosity
terms) .

CONCLUSIONS

Applications of a finite element approach to transonic flow problems have
been discussed. Only small disturbance equations with streamlines almost
parallel to the x-axis (hence, the nodes are located along x = constant lines
in the supersonic region) have been considered. Currently, computations of a
simple numerical example are underway. Extension of this approach to the full
potential equation is possible as long as the direction of the flow in the
supersonic region is almost known a priori.

1381



10.

11.

12.

13.

14.
15.

16.

17.

18.
19.

20.

1382

REFERENCES

Murman, E. M. and Cole, J. D.: ATIAA J., vol. 9, 1971, p. 114.

Murman, E. M.: Proceedings of AIAA Computational Fluid Dynamics Conference,

Palm Springs, July, 1973.
Martin, E. D. and Lomax, H.: AIAA Paper No. 74-11, 1974.
Jameson, A.: Proceedings of AIAA, Hartford, June, 1975.
Argyris, Y. H. and Mareczek, G.: Ingenieur-Archiv, Jan. 1973.
Gelder, D.: Int. J. Num. Methods Eng., vol. 3, 1971, p. 35.

Norrie, D. H. and DeVries, G.: The Finite Element Method, AP, 1973.

Periaux, J.: Int. J. Num. Methods Eng., vol. 9, 1975, p. 775.

Chan, S. T. K. and Brashears, M. R.: AFFDL-TR-74-11, Wright-Patterson
Air Force Base, Ohio, March, 1974.

Zienkiewicz, 0. C.: The Finite Element Method in Engineering Science,
McGraw-Hill, 1971.

Oden, J. T.: Finite Elements of Nonlinear Continua, McGraw Hill, 1972.

Strang, G. and Fix, G. J.: An Analysis of the Finite Element Method,
Prentice-Hall, 1973.

Noble, B.: Proceedings of the Brunel Univ. Conference of the Institute of
Mathematics and Its Application, April, 1972.

Fried, J.: AIAA J., vol. 7, 1969, p. 1170.
Gurtin, M. E.: Archieve Ratl. Mech. Analy., vol. 16, 1964, p. 34.

Tonti, E.: Report, Instituts di Meccanica Razionale del Politechnico di
Milano, Piazza da Vinci, Milano, Italy, 1971.

Swartz, B. and Wendroff, B.: Math. of Computations, vol. 23, no. 105,
June, 1969.

Marchuk, G. I.: Methods of Numerical Mathematics, Springer-Verlag, 1975.
Greenspan, D. and Jain, P.: J. Math. Analysis Appl., vol. 18, 1967, p. 85.

Wellford, L. C. and Oden, J. T.: J. of Comp. Physics, vol. 19, no. 2,
Oct. 1975, p. 179.




21.
22,
23.
24,

25.

Hafez, M. M. and Cheng, H. K.: AIAA Paper No. 75-51, 1975.
Friedrichs, K. 0.: Comm. Pure Appl. Math., vol. 11, 1958, p. 333.
Chu, C. K.: Ph.D. Thesis, New York University, 1959.

Lesaint, P.: Numer. Math., vol. 21, 1973, p. 244.

Leventhal, S. H. and Aziz, A. K.: Proceedings of Symposium on the Numerical
Solution of Partial Differential Equations, Maryland, 1975.

1383



1384
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(a) Character of equations.
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xl x2 xl 3 xl x2
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(b) Solution methods.
Figure 1.~ Mixed flow problems.
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Figure 2.- Element for calculations using finite element
in space, finite difference in time.
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Figure 3.- Elements for calculations using finite element in space
and time.
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Figure 4.- Finite element calculations using higher order shape functions.
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Figure 5.- Finite element assembly modified according to the inverse
shooting method.

Figure 6.- Shock element in finite element scheme.
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